Tag Archives: alternator belt tensioner

China Professional Automobile Parts Timing Belt Tensioner Pulley  for  PEUGEOT  206 CC (2D) 1.6 16V   OEM  957770  82982 alternator pulley

Product Description

MIC NO OEM.NO APPLICATION YEAR PHOTO
TB34PG0003 957770
82982
0829C7
82982
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.6 16V (MBNFU)     
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.6 16V (MFNFU)     
CITROEN  C3 I (FC_, FN_) 1.6 16V     
CITROEN  XSARA (N1) 1.6 16V     
CITROEN  XSARA Break (N2) 1.6 16V     
CITROEN  XSARA Coupe (N0) 1.6 16V     
PEUGEOT  206 CC (2D) 1.6 16V     
PEUGEOT  206 Hatchback (2A/C) 1.6 16V     
PEUGEOT  206 Saloon 1.6 16V     
PEUGEOT  206 SW (2E/K) 1.6 16V     
PEUGEOT  307 (3A/C) 1.6     
PEUGEOT  307 (3A/C) 1.6 16V     
PEUGEOT  307 Break (3E) 1.6 16V     
PEUGEOT  307 CC (3B) 1.6 16V     
PEUGEOT  307 SW (3H) 1.6 16V     
PEUGEOT  PARTNER Combispace (5_, G_) 1.6 16V
2000-2008
2000-2011
2002-2571
2000-2005
2000-2005
2000-2005
2000-2007
2000-2009
2007-
2002-
2006-2012
2000-2007
2002-2008
2003-2009
2002-2008
2001-2008

  

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: One year
Car Make: PEUGEOT
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt pulley

How do belt pulleys affect the performance of woodworking and milling machines?

Belt pulleys have a significant impact on the performance of woodworking and milling machines. They play a crucial role in power transmission, speed control, and overall functionality of these machines. Here’s a detailed explanation of how belt pulleys affect the performance of woodworking and milling machines:

1. Power Transmission: Belt pulleys are essential for power transmission in woodworking and milling machines. They connect the motor or engine to various components, such as the cutting tools, spindles, or feed mechanisms. The rotation of the pulleys transfers power from the motor to the driven components, enabling them to perform their cutting, shaping, or drilling functions. The efficiency and effectiveness of power transmission through the belt pulleys directly impact the overall performance of the machine.

2. Speed Control: Belt pulleys provide speed control in woodworking and milling machines. By using pulleys of different sizes or incorporating variable speed pulley systems, the rotational speed of the driven components can be adjusted. This allows operators to customize the speed based on the specific material being worked on and the desired cutting or milling results. Speed control provided by belt pulleys ensures precision, accuracy, and optimal performance in woodworking and milling operations.

3. Torque Conversion: Belt pulleys also play a crucial role in torque conversion. Torque refers to the rotational force produced by the motor or engine. In woodworking and milling machines, belt pulleys with different diameters can be used to convert the torque generated by the motor into the appropriate torque required by the cutting tools or spindles. This torque conversion ensures that the machine can handle different types of materials and cutting operations effectively, enhancing overall performance.

4. Belt Tension and Stability: Proper tension and stability of the belts running on the pulleys are essential for the performance of woodworking and milling machines. The tension in the belts needs to be adjusted to ensure optimal power transmission and prevent slipping or belt damage. Belt pulleys are designed to maintain the appropriate tension and stability of the belts, ensuring smooth and consistent operation of the machine. This contributes to the accuracy, reliability, and safety of woodworking and milling processes.

5. Tooling and Cutter Compatibility: Belt pulleys can affect the performance of woodworking and milling machines by influencing tooling and cutter compatibility. Different cutting tools and milling cutters require specific rotational speeds and power transmission capacities. The selection of appropriate pulleys and belt arrangements ensures compatibility between the machine’s power transmission system and the cutting tools or milling cutters being used. This compatibility is crucial for achieving desired cutting results, prolonging tool life, and maximizing machine performance.

6. Noise and Vibration: Belt pulleys can impact the noise and vibration levels of woodworking and milling machines. Proper alignment and balancing of the pulleys are essential to minimize vibration and noise generated during operation. Excessive noise and vibration can affect the precision of cuts or milling operations and lead to accelerated wear and tear of machine components. Well-designed and properly maintained belt pulleys contribute to reduced noise and vibration, enhancing the overall performance and operator comfort.

7. Maintenance and Serviceability: Belt pulleys in woodworking and milling machines are designed for easy maintenance and serviceability. They allow for straightforward belt replacement, adjustment, or pulley inspection, ensuring that the machine can be properly maintained and serviced. This contributes to the longevity, reliability, and uninterrupted operation of the woodworking and milling machines.

In summary, belt pulleys have a significant impact on the performance of woodworking and milling machines. They enable power transmission, speed control, torque conversion, and stability of belts. Belt pulleys affect tooling and cutter compatibility, noise and vibration levels, as well as the maintenance and serviceability of the machines. By selecting appropriate pulleys, maintaining proper belt tension, and ensuring pulley alignment, woodworking and milling machines can achieve optimal performance, accuracy, and efficiency in various cutting and shaping tasks.

belt pulley

What types of belts are commonly used with belt pulleys?

Several types of belts are commonly used in conjunction with belt pulleys for power transmission in various applications. The choice of belt depends on factors such as the specific requirements of the machinery, the desired power transmission characteristics, environmental conditions, and the type of pulley system being used. Here are some of the most commonly used types of belts:

1. V-Belts: V-belts, also known as Vee belts, are one of the most widely used types of belts with belt pulleys. They have a trapezoidal cross-section and typically feature a fabric cover and a rubber-like compound. V-belts are known for their high grip and power transmission capabilities, making them suitable for applications with moderate to high loads and speeds. They are commonly used in industries such as automotive, industrial machinery, and HVAC systems.

2. Timing Belts: Timing belts, also called synchronous belts, have toothed profiles on the inner side that engage with corresponding teeth on the pulley. This toothed design provides precise power transmission and prevents slippage. Timing belts are commonly used in applications that require precise synchronization of shafts and accurate positioning, such as in robotics, printing machinery, and automotive engines.

3. Flat Belts: Flat belts have a rectangular cross-section and are typically made of materials such as rubber, fabric, or synthetic compounds. They are flexible and can be easily customized to various lengths. Flat belts are commonly used in applications where high speeds and low power transmission requirements are present, such as in conveyor systems, textile machinery, and packaging equipment.

4. Round Belts: Round belts, also known as round O-ring belts, are circular belts made of materials such as rubber or urethane. They are flexible and can be easily joined to form endless loops. Round belts are commonly used in applications that require a lightweight and flexible power transmission solution, such as in small appliances, office equipment, and material handling systems.

5. Ribbed Belts: Ribbed belts, also called multi-rib belts or serpentine belts, have a ribbed or grooved design on the inner side. These ribs engage with corresponding grooves on the pulley, providing increased contact area and improved power transmission efficiency. Ribbed belts are commonly used in automotive engines, where they drive multiple accessories such as alternators, power steering pumps, and air conditioning compressors.

6. Variable Speed Belts: Variable speed belts, also known as adjustable speed belts or link belts, are made of individual links or segments that can be easily connected or disconnected to adjust the belt length. This allows for stepless speed variation and flexibility in power transmission. Variable speed belts are commonly used in applications where speed adjustment is required, such as in milling machines, woodworking equipment, and industrial conveyors.

These are just a few examples of the types of belts commonly used with belt pulleys. Each type of belt has its own unique characteristics and is suitable for specific applications based on factors such as load capacity, speed requirements, precision, and environmental conditions. The selection of the appropriate belt is crucial to ensure efficient and reliable power transmission in the machinery and equipment utilizing belt pulleys.

belt pulley

What are the key components and design features of a belt pulley?

A belt pulley consists of several key components and incorporates specific design features to ensure efficient power transmission and reliable operation. Understanding these components and design features is essential for proper selection and utilization of belt pulleys in mechanical systems. Here’s an overview of the key components and design features:

1. Pulley Body: The pulley body is the main structure of the belt pulley. It is typically a wheel-shaped component made of materials such as cast iron, steel, or aluminum. The pulley body provides the necessary strength and rigidity to support the belt and transmit rotational motion.

2. Grooved Rim: The rim of the pulley body features a series of grooves or channels. These grooves accommodate the belt or rope, ensuring a secure engagement between the pulley and the transmission element. The groove profile can vary depending on the type of belt or rope being used.

3. Hub or Bore: The hub or bore is the central opening in the pulley body. It allows the pulley to be mounted and secured onto the shaft. The hub may have keyways, splines, or other features to ensure proper alignment and torque transfer between the pulley and the shaft.

4. Flanges: Flanges are raised edges or rims located on the sides of the pulley body, adjacent to the grooved rim. Flanges help guide and prevent the belt from slipping off the pulley during operation. They provide additional support and stability to the belt, ensuring reliable power transmission.

5. Tensioning Mechanism: Some belt pulley designs incorporate a tensioning mechanism. This mechanism allows for adjusting the tension in the belt to ensure proper engagement and prevent slippage. Tensioning mechanisms can include adjustable pulley halves, movable pulley arms, or other mechanisms that enable easy tension adjustment.

6. Idler Pulleys: In certain belt-driven systems, idler pulleys are used in conjunction with the main driving and driven pulleys. Idler pulleys are additional pulleys that do not transmit power but help guide and redirect the belt. They maintain the appropriate tension in the belt, improve belt wrap around the pulleys, and assist in achieving the desired belt path.

7. Surface Finish: The surface finish of a belt pulley is important for reducing friction and wear between the pulley and the belt. Smooth and properly finished surfaces minimize belt slippage and improve power transmission efficiency. The surface finish can be achieved through machining, grinding, or other methods depending on the material and application requirements.

8. Balancing: Balancing is a critical aspect of belt pulley design, especially for high-speed applications. Proper balancing ensures that the pulley rotates smoothly without causing excessive vibrations or premature wear. Unbalanced pulleys can lead to reduced system performance, increased noise, and potential damage to the pulley or other components.

9. Material Selection: The choice of material for a belt pulley depends on factors such as the application requirements, load capacity, operating conditions, and cost considerations. Common materials used for pulleys include cast iron, steel, aluminum, and composite materials. Each material offers specific advantages in terms of strength, durability, corrosion resistance, and weight.

In summary, a belt pulley consists of components such as the pulley body, grooved rim, hub or bore, flanges, tensioning mechanisms, and may include idler pulleys. Design features like surface finish, balancing, and material selection are crucial for optimal performance and longevity of the pulley. Understanding these key components and design features allows for the appropriate selection, installation, and maintenance of belt pulleys in mechanical systems.

China Professional Automobile Parts Timing Belt Tensioner Pulley  for  PEUGEOT  206 CC (2D) 1.6 16V   OEM  957770  82982   alternator pulley	China Professional Automobile Parts Timing Belt Tensioner Pulley  for  PEUGEOT  206 CC (2D) 1.6 16V   OEM  957770  82982   alternator pulley
editor by CX