Product Description
OEM Industrial Iron Transmission Timing Belt Pulleys with RoHS
Synchronous belt pulley transmission is composed of an annular belt with equidistant teeth on the inner peripheral surface and a belt pulley with corresponding teeth. During operation, the belt teeth mesh with the tooth slots of the belt pulley to transmit motion and power. It is a new belt transmission that integrates the respective advantages of belt transmission, chain transmission and gear transmission.
Product Parameters
Product | standard timing belt pulley & idler pulley |
Customized | OEM, drawings or samples customized |
Teeth type | Normal Torque Drive Type:MXL,XL,L,H,XH,XXH High Torque Drive Type:S2M,S3M,S5M,S8M,HTD2M,HTD3M,HTD5M,HTD8M,P2M,P3M,P5M,P8M High Precision Position Drive Type:2GT,3GT,5GT,8YU Light Load Drive Type:T5,T10,T20 Heavy Load Drive Type:AT5,AT10,AT20 |
Basic shape | Type A,Type B,Type D,Type E,Type F,Type K |
Adaption | Adapt to 1/4 inch,5/16 inch,1/2 inch, 3/8inch, 2/25inch, 1/5inch belt |
surface treatment | Natural color anodizing,Black anodizing,Hard anodizing,Ni-plating,Blackening |
Material | 6061(aluminum),S45C(45# steel),SUS304(Stainless steel) |
Bore | Pilot bore, Taper bore and Customized bore. |
Tolerance Control | Outer diameter ±0.005mm Length dimension ±0.05mm |
Standard | DIN, ISO/GB, AGMA, JIS |
Teeth Accuracy | DIN Class 4, ISO/GB Classs 4, AGMA Class 13, JIS Class 0 |
Weight | Max 15Tons |
testing equipment | projecting apparatus,salt spray test,durometer,and coating thickness tester,2D projector |
producing equipment | CNC machine,automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc. |
Machining Process | Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching,Gear Shaving, Gear Grinding and Gear Lapping |
Application industry | Robot industry,Medical industry,Making machine industry,Automation industry,3C industry equipment,Packaging industry,UAV industry,New energy industry. |
Company Profile
Packaging & Shipping
lead time | 10-15 working days as usual,30days in busy season,it will based on the detailed order quantity |
Delivery of samples | by DHL,Fedex,UPS,TNT,EMS |
FAQ
Main markets | Southeast Asia, North America, Eastern Europe, Mid-East, West Europe |
How to order | *You send us drawing or sample |
*We carry through project assessment | |
*We give you our design for your confirmation | |
*We make the sample and send it to you after you confirmed our design | |
*You confirm the sample then place an order and pay us 30% deposit | |
*We start producing | |
*When the goods is done,you pay us the balance after you confirmed pictures or tracking numbers | |
*Trade is done,thank you! |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001:2008 |
---|---|
Pulley Sizes: | Type A |
Manufacturing Process: | Forging |
Material: | Aluminium Alloy |
Surface Treatment: | Polishing |
Application: | Chemical Industry, Grain Transport, Mining Transport, Automation Equipment |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How are belt pulleys utilized in the production of electronics and semiconductors?
In the production of electronics and semiconductors, belt pulleys play a crucial role in various manufacturing processes. They are utilized in different stages of production to facilitate precision, efficiency, and reliability. Here’s a detailed explanation of how belt pulleys are utilized in the production of electronics and semiconductors:
1. Conveyor Systems: Belt pulleys are commonly used in conveyor systems within electronics and semiconductor manufacturing facilities. These conveyor systems transport components, products, or wafers between different stages of production, such as assembly, testing, and packaging. Belt pulleys are utilized to drive the conveyor belts, ensuring smooth and controlled movement of the materials or products. They contribute to the efficient flow of production, allowing for continuous and automated handling of electronic components and semiconductor wafers.
2. Wafer Handling: Belt pulley systems are employed in the handling and processing of semiconductor wafers. These wafers, which serve as the base material for electronic devices, need to be transferred between various equipment and processing stations. Belt pulleys, along with precision belts, are used to grip and transport the delicate and flat wafers. The pulleys ensure accurate positioning and controlled movement of the wafers, essential for precise alignment during processes such as etching, deposition, and lithography.
3. Robotics and Automation: Belt pulleys are integral components in robotics and automation systems utilized in electronics and semiconductor production. These systems often involve robotic arms or gantries that handle and manipulate components or equipment. Belt pulleys are employed in the motorization and control mechanisms of these robotic systems, enabling precise and repeatable movements. They contribute to the accuracy, speed, and reliability required in tasks such as pick-and-place operations, soldering, and inspection processes.
4. Precision Machining: Belt pulleys are used in precision machining operations within electronics and semiconductor production. They are incorporated into milling machines, lathes, and other machining equipment that fabricate electronic components and semiconductor parts. Belt pulleys drive the cutting tools or spindles, providing the necessary rotational motion for precise material removal and shaping. The speed control and torque conversion capabilities of belt pulleys ensure the optimal performance and accuracy required for manufacturing intricate electronic and semiconductor components.
5. Testing and Inspection Equipment: Belt pulleys are utilized in testing and inspection equipment within the electronics and semiconductor industry. These machines perform various tests, measurements, and inspections to ensure the quality and functionality of electronic components and semiconductor devices. Belt pulleys drive the mechanisms that move the components or devices through different testing or inspection stations. They contribute to the controlled and synchronized movement required for accurate measurements, functional tests, and quality checks.
6. Packaging and Labeling: Belt pulleys are employed in packaging and labeling systems for electronics and semiconductor products. These systems handle the final packaging of electronic components, devices, or integrated circuits. Belt pulleys drive the conveyor belts that transport the packaged products, ensuring their smooth and efficient movement through the packaging and labeling processes. They contribute to the automated and streamlined packaging operations, allowing for high-speed production and consistent product presentation.
7. Maintenance and Serviceability: Belt pulleys contribute to the maintenance and serviceability of equipment used in electronics and semiconductor production. They are designed for easy replacement, adjustment, or inspection, allowing for quick and straightforward maintenance tasks. Properly maintained belt pulleys ensure the reliability and uptime of production equipment, minimizing downtime and optimizing the overall manufacturing process.
In summary, belt pulleys are utilized in the production of electronics and semiconductors for conveyor systems, wafer handling, robotics and automation, precision machining, testing and inspection equipment, packaging and labeling systems, as well as maintenance and serviceability. They contribute to the efficient flow of production, precise positioning of components, accurate machining, reliable testing and inspection, streamlined packaging, and ease of equipment maintenance. Belt pulleys play a vital role in enhancing the precision, efficiency, and reliability of the manufacturing processes involved in electronics and semiconductor production.
How does the size and design of a belt pulley impact its performance?
The size and design of a belt pulley have a significant impact on its performance in power transmission systems. The size refers to the dimensions of the pulley, such as its diameter and width, while the design encompasses factors like the groove profile, material selection, and overall construction. Here’s a detailed explanation of how the size and design of a belt pulley impact its performance:
1. Speed and Power Transmission: The size of a belt pulley directly affects the speed and power transmission capability of the system. A larger pulley diameter results in higher belt speeds and increased power transmission capacity. On the other hand, a smaller pulley diameter allows for slower speeds and reduced power transmission. The selection of an appropriate pulley size depends on the desired speed and torque requirements of the application.
2. Belt Tension and Grip: The size and design of a belt pulley influence the tension and grip between the belt and pulley. A larger pulley diameter increases the angle of wrap, which improves the belt’s grip on the pulley and enhances power transmission efficiency. Additionally, the width of the pulley affects the contact area with the belt, allowing for higher load-carrying capacity. Proper belt tension and grip are crucial for preventing belt slippage, maximizing power transfer, and ensuring reliable operation.
3. Speed Ratio: The size and design of the driving and driven pulleys determine the speed ratio between them. By selecting pulleys of different sizes or varying the number of grooves, the speed ratio can be adjusted. This is important in applications where specific speed requirements need to be met, such as in machinery that requires different operating speeds for various operations. The design of the pulleys, including the groove profile and pitch diameter, must be considered to achieve the desired speed ratio.
4. Belt Life and Wear: The size and design of a belt pulley can impact the life and wear characteristics of the belt. Improper pulley sizing or design can lead to excessive belt tension, uneven belt loading, or misalignment, resulting in premature wear and failure of the belt. A well-designed pulley with appropriate dimensions, smooth groove profiles, and proper alignment reduces belt stress and wear, prolonging the belt’s lifespan and reducing maintenance requirements.
5. Noise and Vibration: The size and design of a belt pulley can influence the noise and vibration levels in the power transmission system. Proper pulley size selection and design considerations, such as balancing the pulley, ensuring concentricity, and minimizing runout, help reduce vibration and noise generation. This improves overall system performance, operator comfort, and reduces the potential for component fatigue or damage.
6. Material Selection and Construction: The design of a belt pulley includes material selection and construction considerations. Different materials, such as steel, cast iron, aluminum, or composites, offer varying levels of strength, durability, and resistance to factors like corrosion or extreme temperatures. The design may also include features like hubs, keyways, or flanges, which enhance the pulley’s performance and facilitate proper installation and alignment in the system.
Overall, the size and design of a belt pulley play a crucial role in determining its performance in power transmission systems. Factors such as speed and power transmission capability, belt tension and grip, speed ratio, belt life and wear, noise and vibration levels, and material selection all depend on the proper sizing and design of the pulley. Attention to these factors ensures optimal performance, efficiency, and reliability in belt-driven applications.
What advantages do belt pulleys offer for efficient power transmission?
Belt pulleys offer several advantages that contribute to efficient power transmission in a variety of applications. These advantages make belt pulleys a popular choice for transmitting power in numerous industries. Here are some key advantages of using belt pulleys:
1. High Efficiency: Belt pulleys can achieve high power transmission efficiency. The materials used for pulleys, such as metals or composite materials, are selected for their strength and low friction characteristics. This allows for minimal energy loss during power transmission, resulting in efficient operation and reduced energy consumption.
2. Smooth and Quiet Operation: Belt pulleys provide smooth and quiet operation compared to some other power transmission methods. The flexibility of belts helps in dampening vibrations and reducing noise levels. This is particularly beneficial in applications where noise reduction is important, such as in residential areas, offices, and certain types of machinery.
3. Slip Prevention: Belt pulleys offer slip prevention features, ensuring reliable power transmission. The design of the pulley’s groove and the corresponding belt shape create a positive engagement that helps prevent the belt from slipping during operation. This is particularly advantageous in high-torque applications where maintaining a consistent power transfer is crucial.
4. Overload Protection: Belt pulleys can provide a certain degree of overload protection. In the event of sudden load spikes or jamming of the driven system, the belt can slip or deform slightly, absorbing the shock and protecting the machinery from damage. This inherent flexibility acts as a safety feature, preventing catastrophic failures and reducing the risk of equipment breakdown.
5. Misalignment Compensation: Belt pulleys can accommodate minor misalignments between the driving and driven shafts. The flexibility of the belt allows for slight angular and parallel misalignments, which can naturally occur in machinery due to manufacturing tolerances, thermal expansion, or other factors. This ability to compensate for misalignment helps to minimize stress on bearings and prolong the lifespan of the system.
6. Speed Variation: Belt pulleys provide the flexibility to achieve different speed ratios by simply changing pulley sizes or adjusting the position of variable speed pulleys. This feature allows for speed variation and control in various applications, facilitating the optimization of machine performance and enabling adaptability to different operating conditions.
7. Cost-Effective: Belt pulleys are generally cost-effective compared to some other methods of power transmission. They are relatively simple in design, easy to manufacture, and require less precision than certain alternatives. Additionally, belts are generally less expensive to replace than other types of power transmission components, resulting in lower maintenance costs.
Overall, belt pulleys offer advantages such as high efficiency, smooth and quiet operation, slip prevention, overload protection, misalignment compensation, speed variation, and cost-effectiveness. These advantages make belt pulleys a reliable and versatile choice for efficient power transmission in a wide range of applications across various industries.
editor by CX
2024-05-16